
1

CS-200
Computer Architecture

—
Part 4f. Instruction Level Parallelism

Besides and Beyond Superscalars

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Content of This Lecture

1. Superscalar processors
2. Speculative execution
3. Simultaneous multithreading
4. Nonblocking caches
5. Very Long Instruction Word (VLIW) processors

3

1
Superscalar Processors

4

ILP So Far…

Instructions

Cycles ?

Pipelining

Dynamic Scheduling

Standard

5

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Machine state is
updated in order

Computation advances independently
from machine state updates

6

Superscalar Execution

• Why not to issue (= start execution) more than one instruction per cycle?
– In fact, we are already doing this…

• Key improvements and requirements:
– Fetch more instruction per cycle: no big difficulty if the instruction cache can

sustain the bandwidth
– Commit more instruction per cycle: the ROB and the register file must have

enough ports
– Obey data and control dependencies: dynamic scheduling already takes care of this

Data and control hazards are
the ultimate limit to parallelism

7

Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

8

Third Step: Superscalar Execution

IF ID EX1 EX2 EX3 WB
IF ID EX1 EX2 EX3 EX4 EX5
IF ID EX1 MEM WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 EX4 EX5 WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 WB

IF ID EX1 EX2 EX3 EX4 EX5 EX6 WB

Cycles
In

st
ru

ct
io

ns
1:

2:

3:
4:

5:

6:
7:

8:

MEM

9

Several Steps in Exploiting ILP

Instructions

Cycles

Pipelining

Standard

Superscalar

Dynamic
Scheduling

9

Superscalar processors can also be
created as simple pipelines

1
0

2
Speculative Execution

1
1

Dynamic Branch Prediction

• The biggest problem left to continue extracting Instruction Level
Parallelism are
– True data dependencies: instructions cannot be executed! Not much we can do

about that…
– Branches: where to look for other candidate instructions?

• Static prediction not very accurate and somehow hard to use
– Never-taken, Always-taken-backward, Compiler-Specified
– How does one know which one is right?

• Dynamic prediction: learn from history
– Count how often a branch was taken in the past

1
2

Branch History Table

PC (Branch Address)

0
1
1
0

1
0

…

07831

not taken

taken

taken

not taken

taken

not taken

OR

01
10
11
01

10
00

…

not taken

taken

taken

not taken

taken

not taken

0000 0000:

0000 0001:

0000 0010:

0000 0011:

1111 1110:

1111 1111:

One-bit Prediction
Two-bit Prediction

1
3

One- vs. Two-Bit
Prediction Schemes

• Simplest one-bit predictor: “do the same as last time”

• Two-bit predictor (saturating counter): adding some “inertia” or “take some time to change your mind”

13

Not takenTaken

Taken
Taken

Not taken
Not taken

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

“Strong” Prediction“Weak” Prediction

Actual outcomes

Predictions

1
4

Prediction Accuracy

So
ur

ce
: A

QA
, ©

 M
or

ga
n

Ka
uf

fm
an

 1
99

6

1
5

Speculative Execution

• We have been using Dynamic Branch Prediction only to tentatively Fetch
and Decode instructions  no effect on registers and memory, so easy to
squash

• More aggressively, one could Execute instructions (and use their results)
before the branch target is known: Speculative Execution

• We need to prevent changes to the architectural state of the processor
until the correctness of the prediction is known:
– Was it right? Good!
– Was it wrong? Squash it!

But how?!

1
6

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

Dynamically Scheduled Superscalar Processor

Machine state is
updated in order

Computation advances independently
from machine state updates

1
7

Branches in the ROB

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

BR3 ???
$f5MUL2 ???

0x1111 ab08

0x1111 ab08

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

Predicted branches inserted in the ROB with predicted target

17

Actual target is
initially unknown

1
8

Branches without Outcome
Block the ROB

0
0
0
0
0

0

Register Address ValueTag

BR3 ???
$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

A predicted branch whose outcome is unknown cannot be committed

18

1
9

Correctly Predicted Branches
Are Ignored

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1111 ab08

$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

BR3 can commit (= do nothing and remove from ROB)

19

=

2
0

Mispredicted Branches
Trigger a Squash

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1000 000c0x1111 ab080x1000 0008

PCExcpt.

tail

0
0

head

BR3 triggers a squash and causes fetch to restart at 0x1000000c

20

≠

2
1

Even More ILP…

Instructions

Cycles

Pipelining

Standard

Superscalar

Dynamic
Scheduling

21

Speculative
Execution

2
2

3
Simultaneous Multithreading

2
3

op 1
cy

cle
s op 3

op 4
op 5

op 6

op 2

op 9
op 10
op 12
op 13

op 11

op 14

functional units

op 7

op 8

op 1
op 3

op 2op 5
op 4
op 6

op 7

op 9

op 8

op 10
op 11

op 7 op 5
op 2

op 3
op 8

op 1

op 4

op 6
op 10
op 11

Simultaneous Multithreading (SMT): The Idea

2
4

Dynamically Scheduled Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

PC

One program counter

ROB
One ROB

One register file

2
5

Reorder Buffer

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

Register Renaming
(between fetch/decode and commit)

2
6

Register File

SMT Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

PC

ROB

ALU 2

Instructions
carry no notion
of their origin

Multiple Program Counters

PCPCPC

Multiple ROBs
or one with
thread info

ROBROBROB

Multiple register
files or a larger one

Register File(s)

2
7

Reorder Buffer
Remembers the Thread of Origin

to MEM
and RF

from
F&D Unit

0
1
1

1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???

$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

1 MUL30x2001 1234

2

2

2

1

Thread

$f3 ???

Architectural Register Identifier:
Reg # + Thread #

2
8

Reservation Stations
• Reservation stations do not need to know which thread an instruction belongs to

addd – MUL3 ???1
subd MUL2 – ??? 0xffff fee11

0

Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3:

0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

Thread
#2?!

Thread
#1?!

2
9

29

Intel SMT: Xeon Hyper-Threading Pipeline

Front-end
(TC hit)

OOO
Execution

or
(TC miss)

duplicated
resources

freely shared
resources split

resources
time-shared
resources

So
ur

ce
: M

ar
r e

t a
l.,

 ©
 In

te
l2

00
2

3
0

4
Nonblocking Caches

3
1

New Requirements for the Cache

• Consider the following code:

lw $t2, 0($t0) # t2 = mem[t0]
lw $t3, 0($t1) # t3 = mem[t1]
addi $t3, $t3, 123
andi $t3, $t3, 0xff

• If there is a cache miss for mem[t0], one needs to wait for the (slow)
main memory

• Of course, one wants the superscalar processor to continue execution as
far as dependencies permit it

3
2

Nonblocking Caches

• The cache controller could serve a request, while waiting for the main
memory, if the data are in the cache (hit under miss)
– Hide the miss latency with useful work

• The cache controller could serve a request, while waiting for the main
memory, by issuing another request to memory (miss under miss)
– Overlap the latency of the two misses

• Nonblocking caches are generally needed for dynamically scheduled
superscalar processors

3
3

5
Very Long Instruction Word (VLIW) Processors

3
4

Last and Present Lesson Results:
Several Steps in Exploiting ILP

Instructions

Cycles

Pipelining

Dynamic Scheduling

Superscalar

Standard

3
5

Very Long Instruction Word:
An Alternate Way of Extracting ILP

Instructions

Cycles

VLIW

Pipelining

Standard

3
6

(Dynamically Scheduled)
Superscalar Processor

Dynamic
Scheduling:

What each unit
does in each cycle

is decided at
execution time in

hardware

Instruction Memory

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

1234:
1235:
1236:
1237:
1238: 32-64 bits

Reservation Stations,
Scoreboard, etc.

3
7

(Statically Scheduled)
Very Long Instruction Word Processor

Static
Scheduling:

What each unit
does in each cycle

is decided at
compile time in

software

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

1234:
1235:
1236:
1237:
1238:

128-512 bitsInstruction Memory

3
8

Traditional Code vs. VLIW Code

op 1

op 13

op 6

op 2
op 5

op 14

op 7
op 3

op 12

op 8
op 9
op 10
op 11

NOP
op 4

op 15

NOPNOP
NOP
NOP
NOP
NOP

NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16
NOP
NOP

NOP
NOP

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:
1006:
1007:
1008:

VLIW

op 1
op 2
op 3
op 4
op 5
op 6
op 7
op 8
op 9

1000:
1001:
1002:
1003:
1004:
1005:
1006:
1007:
1008:

Traditional
Out of order execution

is decided
by the compiler

Dependencies are honoured
by the compiler

A column =
an execution unit

If nothing can be found, NOP

3
9

Challenges of VLIW

1. Compiler Technology
– Most severe limitation until the end of the 90s (VLIW idea is around

since the 70s!)

2. Code Bloating
– All those NOPs occupy memory space and thus cost

3. Binary Incompatibility

4
0

What Kind of Information
Is Missing at Compile Time?

• For example, consider:
sw x3, 456(x1)
lw x2, 123(x4)

• Is there a RAW dependence?
– At run time:

• Check if x1+456 = x4+123
• Forwarding may even hide the memory latency…

– At compile time:
• ?!… (special techniques: alias analysis)

• Strong limitation for VLIW

4
1

Typical Code May Have Limited ILP

• Example:
Loop: ld $f0, ($r1) // read array elem.

addd $f4, $f0, $f2 // add constant
sd ($r1), $f4 // write array elem.

subi $r1, $r1, 8 // next element
bnez $r1, Loop

• Schedule on a VLIW processor
– Slot 1: Load/Store Unit or Branch Unit
– Slot 2: ALU
– Slot 3: Floating-Point Unit

• Latencies:
– Load/Store  2 cycles
– Integer  2 cycles
– Branch  2 cycles
– Floating Point  3 cycles

4
2

Load/Store/Branch Unit ALU Floating-Point Unit

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 14

4
3

Typical Code May Have Limited ILP

• Scheduled VLIW code:

• Execution time for $r1 = 80:
– 80 / 8 = 10 iterations; 9 cycles per iteration  90 cycles

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop nop Cycle 5
sd ($r1), $f4 subi $r1, $r1, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $r1, Loop nop nop Cycle 8
nop nop nop Cycle 9

4
4

Enlarge the Scope for ILP: Loop Unrolling

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

subi $r1, $r1, 8
bnez $r1, Loop

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

ld $f6, ($r1-8)
addd $f8, $f6, $f2
sd ($r1-8), $f8

ld $f10, ($r1-16)
addd $f12, $f10, $f2
sd ($r1-16), $f12

ld $f14, ($r1-24)
addd $f16, $f14, $f2
sd ($r1-24), $f16

ld $f18, ($r1-32)
addd $f20, $f18, $f2
sd ($r1-32), $f20

subi $r1, $r1, 40
bnez $r1, Loop

• Replicate body
• Update references
• Rename registers
• etc.

4
5

Loop Unrolling

• Now 80 / (5*8) = 2 iterations; 13 cycles per iteration  26
cycles (vs. 90 cycles, more than 3x faster!)

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
ld $f6, ($r1-8) nop nop Cycle 2
ld $f10, ($r1-16) nop addd $f4, $f0, $f2 Cycle 3
ld $f14, ($r1-24) nop addd $f8, $f6, $f2 Cycle 4
ld $f18, ($r1-32) nop addd $f12, $f10, $f2 Cycle 5
sd ($r1), $f4 nop addd $f16, $f14, $f2 Cycle 6
sd ($r1-8), $f8 nop addd $f20, $f18, $f2 Cycle 7
sd ($r1-16), $f12 nop nop Cycle 8
sd ($r1-24), $f16 nop nop Cycle 9
sd ($r1-32), $f20 subi $r1, $r1, 40 nop Cycle 10
nop nop nop Cycle 11
bnez $r1, Loop nop nop Cycle 12
nop nop nop Cycle 13

4
6

VLIW Compilation Techniques

• Many old and new techniques:
– Aliasing analysis
– Loop unrolling, peeling, fusion, and distribution
– Software pipelining, modulo scheduling
– Trace scheduling, superblock scheduling
– With hardware support in the processor: Predication, hyperblock scheduling,…

• Usually advantage not for free:
– Faster only on most frequent part of the code; penalty elsewhere
– Difficulties to apply them in the general case
– Larger code (worsens the performance of the I-cache)

4
7

Challenges of VLIW

1. Compiler Technology
– Most severe limitation until the end of the 90s (VLIW idea is around

since the 70s!)

2. Code Bloating
– All those NOPs occupy memory space and thus cost

3. Binary Incompatibility

4
8

VLIW Code Bloating
• VLIW code is often much larger than standard code: NOPs are explicit, aggressive unrolling, etc.
• Compare last example: 39 words vs. 5! more than 50% are NOPs!

ld $f0, ($r1) nop nop

ld $f6, ($r1-8) nop nop

ld $f10, ($r1-16) nop addd $f4, $f0, $f2

ld $f14, ($r1-24) nop addd $f8, $f6, $f2

ld $f18, ($r1-32) nop addd $f12, $f10, $f2

sd ($r1), $f4 nop addd $f16, $f14, $f2

sd ($r1-8), $f8 nop addd $f20, $f18, $f2

sd ($r1-16), $f12 nop nop

sd ($r1-24), $f16 nop nop

sd ($r1-32), $f20 subi $r1, $r1, 40 nop

nop nop nop

bnez $r1, Loop nop nop

nop nop nop

ld $f0, ($r1)

addd $f4, $f0, $f2

sd ($r1), $f4

subi $r1, $r1, 8

bnez $r1, Loop

4
9

Code Compression:
Differentiate Fetch Packet and Execute Packet

D1
A1

C0
C1

A0
B1

B
A0

1

load nop add2 muld
nop add1 nop nop

nop nop nop
store sub nop nop

add3

add1 load add2 muld
store sub add3 nop

nop nop nopnop

Separator
(1 = last instruction of a VLIW) Execution Unit

Compressed
Fetch Packets in

memory

Uncompressed
Execute Packets
for the processor

(classic VLIW code)

A B C D
crossbar

5
0

VLIW Code Bloating
• VLIW code is often much larger than standard code: NOPs are explicit, aggressive unrolling, etc.
• Compare last example: 39 words vs. 5! more than 50% are NOPs!

ld $f0, ($r1) nop nop

ld $f6, ($r1-8) nop nop

ld $f10, ($r1-16) nop addd $f4, $f0, $f2

ld $f14, ($r1-24) nop addd $f8, $f6, $f2

ld $f18, ($r1-32) nop addd $f12, $f10, $f2

sd ($r1), $f4 nop addd $f16, $f14, $f2

sd ($r1-8), $f8 nop addd $f20, $f18, $f2

sd ($r1-16), $f12 nop nop

sd ($r1-24), $f16 nop nop

sd ($r1-32), $f20 subi $r1, $r1, 40 nop

nop nop nop

bnez $r1, Loop nop nop

nop nop nop

ld $f0, ($r1)

addd $f4, $f0, $f2

sd ($r1), $f4

subi $r1, $r1, 8

bnez $r1, Loop

Not only a NOP problem,
there are also more
“real” instructions!

5
1

Challenges of VLIW

1. Compiler Technology
– Most severe limitation until the end of the 90s (VLIW idea is around

since the 70s!)

2. Code Bloating
– All those NOPs occupy memory space and thus cost

3. Binary Incompatibility

5
2

VLIW Binary Is Incompatible with More
Aggressive Implementations

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

FP Unit 2ALU 3

Traditional Code

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2 FP Unit 2ALU 3

VLIW Code

???

5
3

VLIW Binary Incompatibility

• More subtle sources of incompatibility
– Changes in instruction latencies—e.g., load latencies increases (logic-memory gap)

• No fully satisfactory solution exists today

• Partial or research solutions:
– Recompile (possible in some kind of systems—not for consumer market…)
– Special VLIW coding/restrictions
– Dynamic Binary Translation

5
4

Summary of Part 4 of CS-200

Instructions

Cycles

VLIW

Pipelining

Standard

Dynamic Scheduling

Superscalar

Speculative
Execution, SMT

Ubiquitous in
general purpose

computing

Architecture of choice
in some embedded

applications (e.g., DSP)

Most simple embedded applications

5
5

Summary of Part 4 of CS-200

• Dynamically-scheduled superscalar processors are the commercial state-of-the-art in
general purpose computing (laptops, data centres): current high-end implementations
of x86 (Intel and AMD) as well as ARM are all superscalar

• VLIW/EPIC processors represent an alternative, valuable in some situations: Itanium 2
was a failed attempt by Intel to bring VLIWs in general-purpose computing; yet,
practically all digital signal processors are VLIW (e.g., in all smartphones or for audio
processing)

• Performance is the result of a subtle balance between exploiting possibilities in
compilers and managing hardware implementation difficulties

5
6

References

• Patterson & Hennessy, COD – RISC-V Edition
– Section 4.11
– Section 5.13 (Nonblocking Caches)
– Section 6.4 (SMT)

	CS-200�Computer Architecture�—�Part 4f. Instruction Level Parallelism�Besides and Beyond Superscalars
	Content of This Lecture
	1
	ILP So Far…
	Dynamically Scheduled Processor
	Superscalar Execution
	Superscalar Processor
	Third Step: Superscalar Execution
	Several Steps in Exploiting ILP
	2
	Dynamic Branch Prediction
	Branch History Table
	One- vs. Two-Bit �Prediction Schemes
	Prediction Accuracy
	Speculative Execution
	Dynamically Scheduled Superscalar Processor
	Branches in the ROB
	Branches without Outcome �Block the ROB
	Correctly Predicted Branches�Are Ignored
	Mispredicted Branches �Trigger a Squash
	Even More ILP…
	3
	Simultaneous Multithreading (SMT): The Idea
	Dynamically Scheduled Superscalar Processor
	Reorder Buffer
	SMT Processor
	Reorder Buffer �Remembers the Thread of Origin
	Reservation Stations
	Intel SMT: Xeon Hyper-Threading Pipeline
	4
	New Requirements for the Cache
	Nonblocking Caches
	5
	Last and Present Lesson Results:�Several Steps in Exploiting ILP
	Very Long Instruction Word:�An Alternate Way of Extracting ILP
	(Dynamically Scheduled) �Superscalar Processor
	(Statically Scheduled) �Very Long Instruction Word Processor
	Traditional Code vs. VLIW Code
	Challenges of VLIW
	What Kind of Information �Is Missing at Compile Time?
	Typical Code May Have Limited ILP
	Slide Number 42
	Typical Code May Have Limited ILP
	Enlarge the Scope for ILP: Loop Unrolling
	Loop Unrolling
	VLIW Compilation Techniques
	Challenges of VLIW
	VLIW Code Bloating
	Code Compression: �Differentiate Fetch Packet and Execute Packet
	VLIW Code Bloating
	Challenges of VLIW
	VLIW Binary Is Incompatible with More Aggressive Implementations
	VLIW Binary Incompatibility
	Summary of Part 4 of CS-200
	Summary of Part 4 of CS-200
	References

