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Superscalar Processors




ILP So Far...
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Superscalar Execution

 Why not to issue (= start execution) more than one instruction per cycle?

— In fact, we are already doing this...

* Key improvements and requirements:

— Fetch more instruction per cycle: no big difficulty if the instruction cache can
sustain the bandwidth

— Commit more instruction per cycle: the ROB and the register file must have
enough ports

— Obey data and control dependencies: dynamic scheduling already takes care of this

Data and control hazards are
the ultimate limit to parallelism
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Third Step: Superscalar Execution
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Several Steps in Exploiting ILP
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Speculative Execution




Dynamic Branch Prediction

* The biggest problem left to continue extracting Instruction Level
Parallelism are

— True data dependencies: instructions cannot be executed! Not much we can do
about that...

— Branches: where to look for other candidate instructions?

 Static prediction not very accurate and somehow hard to use
— Never-taken, Always-taken-backward, Compiler-Specified
— How does one know which one is right?

* Dynamic prediction: learn from history

— Count how often a branch was taken in the past




Branch History Table

PC (Branch Address) Two-bit Prediction
g 7 0 On‘e-/bit Prediction \
0000 0000:| O | not taken 01 | not taken
0000 0001: | 1 |[taken 10 |taken
0000 0010: 1 |taken 11 |taken
00000011: | O [|nottaken OR 01 |not taken

H [ ]

1111 1110: taken 10 |taken
1111 1111: O | nottaken 00 | not taken
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One- vs. Two-Bit
Prediction Schemes

Simplest one-bit predictor: “do the same as last time”

Taken € — Actual outcomes
Taken ‘/\ ;
\/ ! Not taken
Not taken = Predictions

Two-bit predictor (saturating counter): adding some “inertia” or “take some time to change your mind”

“Weak"” Prediction “Strong” Prediction

rogogge

\/’ Not taken

Not taken Not taken Not taken




Prediction Accuracy

-

nasa’7 0%
1%
0%
matrix300 0%
0%
il 1%

tomcatv 0%

1%

doduc

spice
SPECS89
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gcc

AQA, © Morgan Kauffman 1996
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18%

eqgntott 18%

Source

10%
10%
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Frequency of mispredictions

Il 4096 entries: E Unlimited entries: [ 1024 entries
2 bits per entry 2 bits per entry (2.2)




Speculative Execution

* We have been using Dynamic Branch Prediction only to tentatively Fetch

and Decode instructions = no effect on registers and memory, so easy to
squash

* More aggressively, one could Execute instructions (and use their results)
before the branch target is known: Speculative Execution

 We need to prevent changes to the architectural state of the processor
until the correctness of the prediction is known:

— Was it right? Good!
— Was it wrong? Squash it!

N

But how?!




Dynamically Scheduled Superscalar Processor
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Branches in the ROB

Actual target is

Excpt. PC Tag Register Address Value  initially unknown
0
0
0 | 0x1000 0004 S$£3 0x627f bagh [—
0 | ox1000 :1@» 22?
0|oxi111abog|fuL2 | $£5 | 272
0 | 0x1111 abOc $£3 374f
0 |0x1111 ab10jl MEM3 0x3746 09fa ?
tail 0

Predicted branches inserted in the ROB with predicted target
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Branches without Outcome
Block the ROB

Excpt. PC Tag  Register Address Value
0
0
0
0 [ 0x1000 0008| BR3 Ox1111 ab08| 227? }%
0 [Ox1111 ab08 $S£5 0x7677 abcd
0 | 0x1111 abOc $£3 Oxa2cd 374f
0 [0x1111 ab10| MEM3 0x3746 09fa ?227?
tail O

A predicted branch whose outcome is unknown cannot be committed
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tail

Correctly Predicted Branches

Are Ignored

Excpt. PC Tag  Register Address Value
0
0
0 —
O [0x1000 0008| BR3 0x1111 ab08|0x1111 ab08
O [0x1111 ab08 S£5 0x7677 abcd
O [0x1111 abOc $£3 Oxa2cd 374f
0 |0x1111 ab10|{ MEM3 0x3746 09fa | 227
0

BR3 can commit (= do nothing and remove from ROB)

head
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Mispredicted Branches
Trigger a Squash

Excpt. PC Tag Register Address Value
XX
0x1000 0008 BR3 0x1111 ab08 [ 0x1000 000c

OO0.0000

head

BR3 triggers a squash and causes fetch to restart at 0x1000000c
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Speculative

Even More ILP... Execution
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Simultaneous Multithreading




Simultaneous Multithreading (SMT): The Idea

functional units
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op 2
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Dynamically Scheduled Superscalar Processor
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Reorder Buffer

from from EUs
F&D Unit 1 l l l l
PC Tag Register Address Value
0
0
head to MEM
1 |0x1000 0004| — | $£3 0x627f baba [—— __ rF
1 |0x1000 0008 | ALU1 0xa87f b351 ???
1 [ 0x1000 000c $£5 ?22?
tail > O

Register Renaming
(between fetch/decode and commit)




SMT Processor
F Multiple Program Counters
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Reorder Buffer
Remembers the Thread of Origin

from from EUs
F&D Unit 1 l | 1 l l l
PC Thread Tag Register Address Value
0
1]od0000004| 2| — |s$£3 0x627f basa [ ©
1 | 0x1000 0008 EM'. Oxa87fb351| 222
1 |ox2001 1234 nm, ?2?2?
1 [ 0x1000 000c | ?27?
tail: 0

Architectural Register Identifier:
Reg # + Thread #




Reservation Stations

Reservation stations do not need to know which thread an instruction belongs to
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Intel SMT: Xeon Hyper-Threading Pipeline
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Nonblocking Caches




New Requirements for the Cache

Consider the following code:

lw $t2, 0($t0) # t2
lw $t3, 0(S$tl) # t3
addi $t3, $t3, 123

andi S$t3, $t3, Oxff

mem|[t0]
mem|[tl]

If there is a cache miss formem|[t0], one needs to wait for the (slow)
main memory

Of course, one wants the superscalar processor to continue execution as
far as dependencies permit it




Nonblocking Caches

The cache controller could serve a request, while waiting for the main
memory, if the data are in the cache (hit under miss)

— Hide the miss latency with useful work

The cache controller could serve a request, while waiting for the main
memory, by issuing another request to memory (miss under miss)
— Overlap the latency of the two misses

Nonblocking caches are generally needed for dynamically scheduled
superscalar processors




Very Long Instruction Word (VLIW) Processors




Last and Present Lesson Results:
Several Steps in Exploiting ILP
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Very Long Instruction Word:
An Alternate Way of Extracting ILP

VLIW

l Pipelining Cycles

L 1 1 v Instructions
1 1
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(Dynamically Scheduled)
Superscalar Processor

Register Files Load/Store|| Branch

ALU 1 ALU 2 FP Unit e Ui
Dynamic -
Scheduling: Dynamic Scheduler \
What each unit 11 \
does in each cycle 1234:
is decided at 1235: Reservation Stations,
execution time in 1236: N Scoreboard, efc.
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(Statically Scheduled)
Very Long Instruction Word Processor

Register Files ALU 1 ALU 2 EP Unit Load/Store Branph
Unit Unit
Static
Scheduling:

What each unit
does in each cycle
is decided at

compile time in |
software Instruction Memory 128-512 bits




Traditional Code vs. VLIW Code

~ QOut of order execution

A col =
column is decided

Traditiona an execution unit \ VLIW by the compiler
1000:; op1 1000:; op1 op 6 op 7/ NOP
1001: op 2 1001:| | NOP'\ NOP op 3 op 4
1002:] op 3 1002:| | NOP op 2 NOP NOP
1003:] op 4 1003;35 { NOP Top 5 op 12 NOP
1004: op5 004 [NoP |/ NoP NOP op 17
1005 op 6 1005:; \NOP / NOP op 8 op 16
1006:] op 7 1006:] op 13 op 14 op9 NOP
1007:] op 8 1007:; NOP NOP op 10 NOP
1008: op9 1008: NOP NOP op 11 op 15

If nothing can be found, NOP

Dependencies are honoured

by the compiler




Challenges of VLIW

(1. Compiler Technology A
— Most severe limitation until the end of the 90s (VLIW idea is around
since the 70s!) y

\

2. Code Bloating

All those NOPs occupy memory space and thus cost

3. Binary Incompatibility




What Kind of Information
Is Missing at Compile Time?

* For example, consider:
sw x3, 456(x1)
lw  x2, 123(x4)

* |sthere a RAW dependence?

— At run time:
* Check if x1+456 = x4+123
* Forwarding may even hide the memory latency...

— At compile time:
« ?l... (special techniques: alias analysis)

e Strong limitation for VLIW




Typical Code May Have Limited ILP

* Example:
Loop: 1d $£0, (Srl) // read array elem.
addd $Sf4, S$£f0, $f2 // add constant
sd ($rl), S$f4 // write array elem.
subi $rl, S$rl, 8 // next element

bnez $rl, Loop

* Schedule on a VLIW processor
— Slot 1: Load/Store Unit or Branch Unit
— Slot 2: ALU
— Slot 3: Floating-Point Unit

* Latencies:
— Load/Store = 2 cycles
— Integer = 2 cycles
— Branch = 2 cycles
— Floating Point = 3 cycles
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Typical Code May Have Limited ILP

Scheduled VLIW code:

Load/Store/Branch Unit ALU Floating-Point Unit

1d $f0, (Srl) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop Cycle 5
sd ($rl) f4 ubi $rl, $rl, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $rl, Loop nop nop Cycle 8
nop nop nop Cycle 9

e Execution time for Srl = 80:
— 80/ 8 =10 iterations; 9 cycles per iteration = 90 cycles




Enlarge the Scope for ILP: Loop Unrolling

Loop: 1d $£0, (Srl)
addd $f4, $£0, $£2
sd ($rl), $f4
Loop: 1d $£0, ($rl) 1d $f6, ($rl-8)
addd $£f4, $£0, S$£2 addd $£f8, $f6, $f£f2
sd ($rl), $f4 sd ($r1-8), s$f8
subi  $rl, $rl, 8 1d $£10, ($rl-1e6)
bnez $rl, Loop addd $£f12, $£10, $f2
sd ($r1-16), S$£12
1d $£14, ($rl-24)
addd $f16, $£f14, S$£2
e Replicate body sd ($r1-24), $£16
e Update references 1d $£18, ($rl-32)
e Rename registers addd  $£20, $£18, $£2
sd ($r1-32), $£20

e efc.

subi $rl, $rl, 40
bnez $rl, Loop




Loop Unrolling

Load/Store/Branch Unit ALU Floating-Point Unit

1d $f0, (Srl) nop nop Cycle 1

1d $f6, ($rl-8)

nop Cycle 2

14 $£10, ($rl-16) nop addd $f4, $£f0, $£f2 Cycle 3

14 Sf14, ($rl-24) nop addd $£8, $f6, $f2 Cycle 4

1d $£18, ($rl-32) addd $£f12, $£f10, S$f2 Cycle 5
sd ($Srl), Sf4 nop addd $f16, $f14, S$f2 Cycle 6
sd ($rl1-8), S$£f8 nop addd $£20, $£18, S$f2 Cycle 7
sd ($rl-16), S$f1l2 nop nop Cycle 8
sd (S$Srl-24), S$fle6 nop nop Cycle 9
sd ($r1-32), $£20 ubi $r1, S$rl, 40 nop Cycle 10
nop Vlop nop Cycle 11
bnez $rl, Loop nop nop Cycle 12
nop nop nop Cycle 13

* Now 80/ (5*8) = 2 iterations; 13 cycles per iteration = 26
cycles (vs. 90 cycles, more than 3x faster!)




VLIW Compilation Techniques

 Many old and new techniques:
— Aliasing analysis
— Loop unrolling, peeling, fusion, and distribution
— Software pipelining, modulo scheduling
— Trace scheduling, superblock scheduling
— With hardware support in the processor: Predication, hyperblock scheduling,...

e Usually advantage not for free:
— Faster only on most frequent part of the code; penalty elsewhere
— Difficulties to apply them in the general case
— Larger code (worsens the performance of the I-cache)




Challenges of VLIW

1. Compiler Technology

— Most severe limitation until the end of the 90s (VLIW idea is around
since the 70s!)

-
2. Code Bloating
— All those NOPs occupy memory space and thus cost

3. Binary Incompatibility




VLIW Code Bloating

* VLIW code is often much larger than standard code: NOPs are explicit, aggressive unrolling, etc.
 Compare last example: 39 words vs. 5! more than 50% are NOPs!

1d $£0, ($rl) nop nop

1d $f6, ($rl-8) nop nop

1d $£10, ($rl-16) nop addd $f4, $£0, $f2

1d $£f14, ($r1-24) nop addd $£8, $f6, $f2
1d $£f0, ($rl) 1d $f18, ($rl1-32) nop addd $£12, $£10, $f£2
addd $£f4, $£f0, $f£2 sd ($rl) , S$f£4 nop addd $£f16, $f14, $f£2
sd  ($rl), $f4 sd ($rl-8), S$£8 nop addd $£20, $f18, $f2
subi $rl, $rl, 8 sd ($rl-16), $£f12 nop nop
bnez $rl, Loop sd  ($rl-24), $fle nop nop

sd  ($rl-32), $£20 subi $rl, $rl, 40 nop

nop nop nop

bnez $rl, Loop nop nop

nop nop nop




Differentiate Fetch Packet and Execute Packet

Uncompressed
Execute Packets
for the processor
(classic VLIW code)

Compressed
Fetch Packets in
memory

(1 = last instruction of a VLIW)

Code Compression:

t

t

t

t

nop addi nop nop
load nop add> muld
store sub nop nop
| nop nop adds nop
nop nop nop nop

|1(B| add:; [O[A| load [0[{C| add, [1[D| muld
[0[A] store [1]B] sub [1[C[ adds [1]A] nop |
Separator \

Execution Unit




VLIW Code Bloating

* VLIW code is often much larger than standard code: NOPs are explicit, aggressive unrolling, etc.
 Compare last example: 39 words vs. 5! more than 50% are NOPs!

Not only a NOP problem,

there are also more \f
1d

“real” instructions! g o) e 2O
1d $f6, ($rl-8) op nop
1d $£10, ($rl-1e) fop addd $f4, $£0, $£2
1d  $£f14, ($rl-24) fop addd $£8, $£6, $f2
1d $£f0, ($rl) 1d $f18, ($rl1-32) fop addd $£12, $£10, $f£2
addd $£f4, $£f0, $f£2 sd ($rl) , S$f£4 ffop addd $£f16, $f14, $f£2
sd  ($rl), $f4 sd ($rl-8), S$£8 fop addd $£20, $f18, $f2
subi $rl, $rl, 8 sd ($rl-16), $£f12 fop nop
bnez $rl, Loop sd  ($rl-24), $fle fop nop
\\ sd  ($rl-32), $£20 fubi $rl, $ri, 40 nop
op 4/nop nop
bnez $rl, Loop nop nop
nop nop nop




Challenges of VLIW

1. Compiler Technology

— Most severe limitation until the end of the 90s (VLIW idea is around
since the 70s!)

2. Code Bloating
— All those NOPs occupy memory space and thus cost

[3. Binary Incompatibility ]




VLIW Binary Is Incompatible with More
Aggressive Implementations
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VLIW Binary Incompatibility

* More subtle sources of incompatibility

— Changes in instruction latencies—e.g., load latencies increases (logic-memory gap)
* No fully satisfactory solution exists today

* Partial or research solutions:
— Recompile (possible in some kind of systems—not for consumer market...)
— Special VLIW coding/restrictions
— Dynamic Binary Translation




Speculative
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Summary of Part 4 of CS-200

* Dynamically-scheduled superscalar processors are the commercial state-of-the-art in
general purpose computing (laptops, data centres): current high-end implementations
of x86 (Intel and AMD) as well as ARM are all superscalar

* VLIW/EPIC processors represent an alternative, valuable in some situations: Itanium 2
was a failed attempt by Intel to bring VLIWs in general-purpose computing; yet,
practically all digital signal processors are VLIW (e.g., in all smartphones or for audio
processing)

* Performance is the result of a subtle balance between exploiting possibilities in
compilers and managing hardware implementation difficulties
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e Patterson & Hennessy, COD — RISC-V Edition
— Section 4.11
— Section 5.13 (Nonblocking Caches)
— Section 6.4 (SMT)
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